If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-36x+51=0
a = 6; b = -36; c = +51;
Δ = b2-4ac
Δ = -362-4·6·51
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-6\sqrt{2}}{2*6}=\frac{36-6\sqrt{2}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+6\sqrt{2}}{2*6}=\frac{36+6\sqrt{2}}{12} $
| 0.133*x-1.3=3 | | 2(8n-4)-3=6n+39 | | 4h^2+8h=2 | | -2g-2=-3g-10 | | 4h^2-8h=2 | | 36^-3x=216 | | x*(x+3)=50 | | -2g−2=-3g−10 | | m+-6=12 | | n-(-6-)=25 | | -6b-4=-4b+8 | | 32x•48=80x•12 | | 4x-3(2x-5)=-10 | | 7-2x-7=3-8x | | -6b−4=-4b+8 | | z=-2.2 | | (3x-5)(4x-1)=0 | | (2x-8)(2x+7)=0 | | -2x+19=5(x+1) | | 4g+8=3g | | 438-c=161 | | 161=438−c | | 32=4w^2 | | 3x=532 | | 2x-11=3x+4 | | 2x(3)=5x(3/4) | | 39+2x+15=180 | | 4m+4m=-16 | | 2-f=3f-10 | | 6x+4x=152 | | 9x+57=180 | | 3x+5-x=27 |